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HOW TO WRITE A BAYESIAN MODELING PAPER

1. Write down a generative model in an afternoon

2. Get 2 grad students to implement inference for a month

3. Use technical details of inference to pad half of the paper
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CAN WE DO BETTER?

Example: Graphical Models

Application Papers

1. Write down a graphical model

2. Perform inference using general-purpose software

3. Apply to some new problem

Inference papers

1. Identify common structures in graphical models (e.g. chains)

2. Develop efficient inference method

3. Implement in a general-purpose software package

Modeling and inference have been disentangled
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EXPRESSIVITY

Not all models are graphical models
What is the largest class of models available?

Probabilistic Programs

I A probabilistic program (PP) is any program that can depend on random
choices. Can be written in any language that has a random number generator.

I You can specify any computable prior by simply writing down a PP that
generates samples.

I A probabilistic program implicitly defines a distribution over its output.

4 / 11



AN EXAMPLE PROBABILISTIC PROGRAM

1 flip = rand < 0.5
2 i f flip
3 x = randg + 2 % Random draw from Gamma(1,1)
4 e l s e
5 x = randn % Random draw from standard Normal
6 end

Implied distributions over variables
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PROBABILISTIC PROGRAMMING: CONDITIONING

Once we’ve defined a prior, what can we do with it?
The stochastic program defines joint distribution P(D,N,H)

I D to be the subset of variables we observe (condition on)

I H the set of variables we’re interested in

I N the set of variables that we’re not interested in, (so we’ll integrate them out).

We want to know about P(H|D)

Probabilistic Programming

I Usually refers to doing conditionial inference when a probabilistic program
specifies your prior.

I Could also be described as automated inference given a model specified by a
generative procedure.

6 / 11



AN EXAMPLE PROBABILISTIC PROGRAM:
CONDITIONING
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CAN WE DEVELOP GENERIC INFERENCE FOR ALL PPS?

Rejection sampling

1. Run the program with a fresh source of random numbers

2. If condition D is true, record H as a sample, else ignore the sample

3. Repeat

Example

1 flip = rand < 0.5
2 i f flip
3 x = randg + 2
4 e l s e
5 x = randn
6 end

This produces samples over the execution trace
e.g.

(True, 2.7), (True, 2.1), (False, 2.3), . . .
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CAN WE BE MORE EFFICIENT?

Metropolis-Hastings

1. Start with a trace
I (True, 2.3)

2. Change one random decision, discarding subsequent decisions
I (False,)

3. Sample subsequent decisions
I (False, -0.9)

4. Accept with appropriate (RJ)MCMC acceptance probability
I Reject, does not satisfy observation (i.e. likelihood is zero)
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PP VIA METROPOLIS-HASTINGS - NOTATION

Evaluating a program results in a sequence of random choices

x1 ∼ pt1 (x1).

x2 ∼ pt2 (x2|x1).

x3 ∼ pt3 (x3|x2, x1).

xk ∼ ptk (xk| x1, . . . , xk−1︸ ︷︷ ︸
execution trace

).

The density/probability of a particular evaluation is then

p(x1, . . . , xK) =

K∏
k=1

ptk (xk|x1, . . . , xk−1).

We then perform MH over the the execution trace x = (x1, . . . , xK)
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MH OVER EXECUTION TRACES

1. Select a random decision in the execution trace x

I e.g. xk

2. Propose a new value
I e.g. x′k ∼ Ktk (x′k|xk)

3. Run the program to determine all subsequent choices (x′l : l > k), reusing
current choices where possible

4. Propose moving from the state (x1, . . . , xK) to (x1, . . . , xk−1︸ ︷︷ ︸
old choices

, x′k, . . . , x
′
K′︸ ︷︷ ︸

new choices

)

5. Accept the change with the appropriate MH acceptance probability

Ktk (xk|x′k)
∏K′

i=k pt′i
(x′i |x1, . . . , xk−1, x′k, . . . , x

′
i−1)

Ktk (x′k|xk)
∏K

i=k pti (xi|x1, . . . , xk−1, xk, . . . , xi−1)
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DEMO: REGRESSION WITH AN INTERESTING PRIOR
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NONPARAMETRIC MODELS

I If we can sample from the prior of a nonparametric model using finite resources
with probability 1, then we can perform inference automatically using the
techniques described thus far

I We can sample from a number of nonparametric processes/models with finite
resources (with probability 1) using a variety of techniques

I Gaussian processes via marginalisation
I Dirichlet processes via stick breaking
I Indian Buffet processes via urn schemes

I Active research to produce finite sampling algorithms for other nonparametric
processes (e.g. hierarchical beta processes, negative binomial process)
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EXAMPLE: MIXTURE OF GAUSSIANS

Generative model

(µk)k=1...K
iid∼ N (0, 1)

(πk)k=1...K ∼ Dir(α/K)

Θ :=
K∑

k=1

πkδµk

(θn)n=1...N
iid∼ Θ

(xi)n=1...N ∼ N (θn, 1)

(Pseudo) MATLAB code

mu = randn(K,1)
pi = dirichlet(K, alpha/K)

for n = 1:N
theta = mu(mnrnd(1,pi))
x(n) = theta + randn

end
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EXAMPLE: INFINITE MIXTURE OF GAUSSIANS

Limit of generative model is a DP

(µk)k=1...K
iid∼ N (0, 1)

(πk)k=1...K ∼ Dir(α/K)

Θ :=
K∑

k=1

πkδµk →K→∞
Θ ∼ DP(α,N (0, 1))

Avoiding infinity

I Θ is now infinitely complex, and can only be represented approximately with
finite resources

I However, we can sample a finite number of samples (θn)n=1...N from some
unknown Θ in finite time (with probability 1) using a stick-breaking algorithm
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EXAMPLE: INFINITE MIXTURE OF GAUSSIANS

MATLAB stick breaking construction

1 sticks = [];
2 atoms = [];
3 f o r i = 1:n
4 p = rand;
5 whi le p > sum(sticks)
6 sticks(end+1) = (1-sum(sticks)) * betarnd(1, alpha);
7 atoms(end+1) \ = randn;
8 end
9 theta(i) = atoms( f i n d(cumsum(sticks)>=p, 1, ‘first’));

10 end
11 x = theta’ + randn(n, 1);
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DEMOS: NONPARAMETRIC MODELS
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ADVANCED AUTOMATIC INFERENCE

I Now that we have separated inference and model design, can use any inference
algorithm.

I Free to develop inference algorithms independently of specific models.

I Once graphical models identified as a general class, many model-agnostic
inference methods:

I Belief Propagation
I Pseudo-likelihood
I Mean-field Variational
I MCMC

I What generic inference algorithms can we implement for more expressive
generative models?
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ADVANCED AUTOMATIC INFERENCE: GIBBS

I BUGS: Bayesian inference Using Gibbs Sampling
I An early, limited form of automated inference in generative models.
I Began in 1989 in the MRC Biostatistics Unit, Cambridge, UK.
I A workhorse of applied statisticians. Also JAGS (open-source)

model{
for( i in 1 : N ) {

S[i] ~ dcat(pi[])
mu[i] <- theta[S[i]]
x[i] ~ dpois(mu[i])
for (j in 1 : C) {
SC[i, j] <- equals(j, S[i])}}

# Precision Parameter
alpha~ dgamma(0.1,0.1)
# Constructive DPP
p[1] <- r[1]
for (j in 2 : C) {
p[j] <- r[j] * (1 - r[j - 1]) * p[j -1 ] / r[j - 1]}

p.sum <- sum(p[])
for (j in 1:C){
theta[j] ~ dgamma(A, B)
r[j] ~ dbeta(1, alpha)
# scaling to ensure sum to 1
pi[j] <- p[j] / p.sum }

# hierarchical prior on theta[i] or preset parameters
A ~ dexp(0.1) B ~dgamma(0.1, 0.1)
# total clusters
K <- sum(cl[])
for (j in 1 : C) {
sumSC[j] <- sum(SC[ , j])
cl[j] <- step(sumSC[j] -1)}}

Data:
list(x=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,
2,3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6,7,7,7,8,9,9,10, 10,
11, 11, 12, 12, 14, 15, 15, 17, 17, 22, 24, 34), N=101, C=19)

Results
node mean sd MC error 2.5% median 97.5% start sample
Deviance 301.3 15.86 0.4314 269.3 301.7 332.2 1001 10000
K 6.764 1.494 0.07225 4.0 7.0 10.0 1001 10000
mu[92] 13.34 3.113 0.04068 5.656 14.11 17.5 1001 10000
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ADVANCED AUTOMATIC INFERENCE:
METROPOLIS-HASTINGS

I Bher, MIT-Church
(Goodman, Mansinghka, Roy, Bonawitz and Tenenbaum, 2008)

I (Automatic inference in Scheme)

I Stochastic Matlab
I Lightweight Implementations of Probabilistic Programming Languages

Via Transformational Compilation
(Wingate, Stuhlmüller, Goodman, 2011)
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ADVANCED AUTOMATIC INFERENCE: HMC

I Automatic Differentiation in Church:
Nonstandard Interpretations of Probabilistic Programs for Efficient Inference
(Wingate, Goodman, Stuhlmuller, Siskind, 2012)

I Stan (Gelman et al)
http://mc-stan.org/
// Predict from Gaussian Process Logistic Regression
// Fixed covar function: eta_sq=1, rho_sq=1, sigma_sq=0.1

data {
int<lower=1> N1;
vector[N1] x1;
int<lower=0,upper=1> z1[N1];
int<lower=1> N2;
vector[N2] x2;}

transformed data {
int<lower=1> N;
vector[N1+N2] x;
vector[N1+N2] mu;
cov_matrix[N1+N2] Sigma;
N <- N1 + N2;
for (n in 1:N1) x[n] <- x1[n];
for (n in 1:N2) x[N1 + n] <- x2[n];
for (i in 1:N) mu[i] <- 0;
for (i in 1:N)

for (j in 1:N)
Sigma[i,j] <- exp(-pow(x[i] - x[j],2))

+ if_else(i==j, 0.1, 0.0);}
parameters {
vector[N1] y1;
vector[N2] y2;}

model {
vector[N] y;
for (n in 1:N1) y[n] <- y1[n];
for (n in 1:N2) y[N1 + n] <- y2[n];

y ~ multi_normal(mu,Sigma);
for (n in 1:N1)

z1[n] ~ bernoulli_logit(y1[n]);}
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ADVANCED AUTOMATIC INFERENCE: EXPECTATION

PROPAGATION

I Infer.NET (Minka, Winn, Guiver, Knowles, 2012)
I EP in graphical models:
I Now works in functional language F#:
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ADVANCED AUTOMATIC INFERENCE: VARIATIONAL

I Infer.NET has it too.

I Automated Variational Inference in Probabilistic Programming
(Wingate, Weber, 2012)

I Learning phase: Forward sample, then stochastically update θs to minimize
expected KL from true distribution.

I Dependency of variatonal dist on control logic remains.
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ADVANCED AUTOMATIC INFERENCE: HARDWARE

I Natively Probabilistic Computation (Mansinghka, 2009)
I Lyric Semiconductor? (Error correcting codes)
I Main idea: If we know we’re going to be sampling, some errors in computation

can be OK.
I Samplers can be made robust to computational error.
I Run at low voltage on (cheap?) FPGA

I Compile from generative model to FPGA (9x9 Ising model sampler):
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AUTOMATED MODELING

I Automated inference helpful for human modelers.

I Essential for machine-generated models
I For example, approximate Solomonoff induction.

I Essential for more general version of automated Bayesian statistician.
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THEORETICAL DIRECTIONS

Inference in stochastic programs opens up a new branch of computer science, new
generalizations of computability:

I "Computable de Finetti measures"
(Freer, Roy, 2012)

I "Noncomputable conditional distributions"
(Ackerman, Freer, Roy, 2011)

I "Computable exchangeable sequences have computable de Finetti measures"
(Freer, Roy, 2009

I "On the computability and complexity of Bayesian reasoning"
(Roy, 2012)

Main takeaways:

I No general computable algorithm exists for conditioning

I Representational choices important
I i.e. stick-breaking vs CRP latent representation changes computability
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COMPILER DEVELOPMENT

I 1950s: Ask a programmer to implement an algorithm efficiently: They’ll write
it on their own in assembly.

I No good compilers; problem-dependent optimizations that only human
expert could see.

I 1970s: Novice programmers use high-level languages and let compiler work
out details, experts still write assembly.

I Experts still write custom assembly when speed critical.

I 2000s: On most problems, even experts can’t write faster assembly than
optimizing compilers.

I can automatically profile (JIT).
I can take advantage of paralellization, complicated hardware, make

appropriate choices w.r.t. caching.
I Compilers embody decades of compiler research
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INFERENCE METHODS IN THE FUTURE

I 2010: Ask a grad student to implement inference efficiently: They’ll write it on
their own.

I No good automatic inference engines; problem-dependent optimizations
that only human expert can see.

I 2015: Novice grad students use automatic inference engines and let compiler
work out details, experts still write their own inference.

I Experts still write custom inference when speed critical.

I 2020: On most problems, even experts can’t write faster inference than mature
automatic inference engines.

I Can use paralellization, sophisticated hardware
I Can automatically choose appropriate methods (meta-reasoning?).
I Inference engines will embody 1 decade (!) of PP research.
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HOW TO WRITE A BAYESIAN MODELING PAPER: 2010

1. Write down a generative model in an afternoon

2. Get 2 grad students to implement inference for a month

3. Use technical details of inference to pad half of the paper
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HOW TO WRITE A BAYESIAN MODELING PAPER: 2020

1. Write down a generative model in an afternoon

2. Get 2 grad students to implement inference for a month
Run automatic inference engine.

3. Use technical details of inference to pad half of the paper
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HOW TO WRITE A BAYESIAN MODELING PAPER: 2020

1. Write down a generative model in an afternoon

2. Get 2 grad students to implement inference for a month
Run automatic inference engine.

3. Use technical details of inference to pad half of the paper
Discuss strengths and weaknesses of the model in the extra 4 pages.

Thanks!
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