The GPML Toolbox version 3.1

Carl Edward Rasmussen & Hannes Nickisch

February 18,2011

Abstract

The GPML toolbox is an Octave 3.2.x and Matlab 7.x implementation of inference and pre-
diction in Gaussian process (GP) models. It implements algorithms discussed in Rasmussen &
Williams: | Gaussian Processes for Machine Learning , the MIT press, 2006 and Nickisch &
Rasmussen: | Approximations for Binary Gaussian Process Classification |, JMLR, 2008.

The strength of the function lies in its flexibility, simplicity and extensibility. The function is
flexible as firstly it allows specification of the properties of the GP through definition of mean func-
tion and covariance functions. Secondly, it allows specification of different inference procedures,
such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows specification of
likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumulative Logistic (for
classification). Simplicity is achieved through a single function and compact code. Extensibility is
ensured by modular design allowing for easy addition of extension for the already fairly extensive
libraries for inference methods, mean functions, covariance functions and likelihood functions.

This document is a technical manual for a developer containing many details. If you are not
yet familiar with the GPML toolbox, the | user documentation | and examples therein are a better
way to get started.

http://gaussianprocess.org/gpml/
http://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
http://gaussianprocess.org/gpml/code/

Contents

[1 Gaussian Process Training and Prediction|

2 The gp Function|

[3__Inference Methodsl

[3.2 Laplace’s Approximation|. e e e e e e e e e

[3.3 Expectation Propagation| o o oo oo
3.4 Variational Bayes| e

4.3 Implemented Likelihood Functions|
[4.4 Compatibility Between Likelihoods and Inference Methods|
4.5 Gaussian Likelthoodl

[4.5.2 Laplace’s Approximation|.

[4.5.3 Expectation Propagation|. o o o 000
[4.5.4 Variational Bayes|
4.6 Laplace Likelihood|

[4.6.1 Laplace’s Approximation|. e
4.6.2 Expectation Propagation| o oo oo
4.6.3 Variational Bayes| e
4.7 Students t Likelithood

{4.7.1 Laplace’s Approximation|.
4.8 Cumulative Logistic Likelthood|

[4.8.1 Laplace’s Approximation|. e

5.2 Implemented Mean Functions| e
5.3 Usage of Implemented Mean Functions|

6.2 Implemented Covariance Functions|
6.3 Usage of Implemented Covariance Functions|

1 Gaussian Process Training and Prediction

The gpml toolbox contains a single user function gp described in section 2| In addition there are a
number of supporting structures and functions which the user needs to know about, as well as an
internal convention for representing the posterior distribution, which may not be of direct interest to
the casual user.

Inference Methods An inference method is a function which computes the (approximate) posterior,
the (approximate) negative log marginal likelihood and its partial derivatives w.r.t.. the hyper-
parameters, given a model specification (i.e., GP mean and covariance functions and a likeli-
hood function) and a data set. Inference methods are discussed in section |3} New inference
methods require a function providing the desired inference functionality and possibly extra
functionality in the likelihood functions applicable.

Hyperparameters The hyperparameters is a struct controlling the properties of the model, i.e.. the
GP mean and covariance function and the likelihood function. The hyperparameters is a struct
with the three fields mean, cov and 1ik, each of which is a vector. The number of elements in
each field must agree with number of hyperparameters in the specification of the three functions
they control (below). If a field has no entries it can either be empty or non-existent.

Likelihood Functions The likelihood function specifies the form of the likelihood of the GP model
and computes terms needed for prediction and inference. For inference, the required properties
of the likelihood depend on the inference method, including properties necessary for hyperpa-
rameter learning, section

Mean Functions The mean function is a cell array specifying the GP mean. It computes the mean
and its derivatives w.r.t.. the part of the hyperparameters pertaining to the mean. The cell array
allows flexible specification and composition of mean functions, discussed in section |5} The
default is the zero function.

Covariance Functions The covariance function is a cell array specifying the GP covariance function.
It computes the covariance and its derivatives w.r.t.. the part of the hyperparameters pertaining
to the covariance function. The cell array allows flexible specification and composition of
covariance functions, discussed in section [6]

Inference methods, see section (3] compute (among other things) an approximation to the posterior
distribution of the latent variables f; associated with the training cases, i = 1,...,n. This approx-
imate posterior is assumed to be Gaussian, and is communicated via a struct post with the fields
post.alpha, post.s and post.L. Often, starting from the Gaussian prior p(f) = N(f|m,K) the
approximate posterior admits the form

q(flD) = N(flu =m+Ka, V=(K'+W)" 1), where W diagonal with Wi; =si. (1)

In such cases, the entire posterior can be computed from the two vectors post.alpha and post.s;
the inference method may optionally also return L = chol(diag(s)K diag(s) + I).

If on the other hand the posterior doesn’t admit the above form, then post.L returns the matrix
L=—(K+W1)~! (and post.s is unused). In addition, a sparse representation of the posterior may
be used, in which case the non-zero elements of the post.alpha vector indicate the active entries.

2 The gp Function

The gp function is typically the only function the user would directly call.

(gp.m E

1 function [varargout] = gp(hyp, inf, mean, cov, 1lik, x, y, xs, ys)

2 (gp function help [4b)

3 (initializations[Sb)

4 (inference6a)

5 if nargin==7 % if no test cases are provided
6 varargout = {nlZ, dnlZ, post}; % report -log marg lik, derivatives and post
7 else
8 (compute test predictions
9

end

It offers facilities for training the hyperparameters of a GP model as well as predictions at unseen
inputs as detailed in the following help.

(gp function help b)) = (4a)

1 % Gaussian Process inference and prediction. The gp function provides a

2 % flexible framework for Bayesian inference and prediction with Gaussian

3 % processes for scalar targets, i.e. both regression and binary

4 % classification. The prior is Gaussian process, defined through specification
5 % of its mean and covariance function. The likelihood function is also

6 % specified. Both the prior and the likelihood may have hyperparameters

7 % associated with them.

8

9 % Two modes are possible: training or prediction: if no test cases are

10 % supplied, then the negative log marginal likelihood and its partial

11 % derivatives w.r.t. the hyperparameters is computed; this mode is used to fit
12 7, the hyperparameters. If test cases are given, then the test set predictive
13 % probabilities are returned. Usage:

14 %

15 % training: [nlZ dnlZ] = gp(hyp, inf, mean, cov, lik, x, y);
16 % prediction: [ymu ys2 fmu fs2] = gp(hyp, inf, mean, cov, lik, x, y, xs);
17 % or: [ymu ys2 fmu fs2 1p] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys);
18 %

19 % where:

20 %

21 % hyp column vector of hyperparameters

22 % inf function specifying the inference method

23 % cov prior covariance function (see below)

24 % mean prior mean function

25 % lik likelihood function

26 % X n by D matrix of training inputs

27 h y column vector of length n of training targets

28 % XS ns by D matrix of test inputs

29 % ys column vector of length nn of test targets

30 %

31 % nlZ returned value of the negative log marginal likelihood

32 % dnlZ column vector of partial derivatives of the negative

33 % log marginal likelihood w.r.t. each hyperparameter

34 % ymu column vector (of length ns) of predictive output means

35 % ys2 column vector (of length ns) of predictive output variances
36 % fmu column vector (of length ns) of predictive latent means

37 h fs2 column vector (of length ns) of predictive latent variances
38 % 1p column vector (of length ns) of log predictive probabilities
39 %

40 % post struct representation of the (approximate) posterior
41 % 3rd output in training mode and 6th output in prediction mode
42 %
43 % See also covFunctions.m, infMethods.m, likFunctions.m, meanFunctions.m.
44 %
45 (gpml copyright[Sa)

(gpml copyright |Sa)= @bli8ofL3]Ls]23]24]26]29)

1 % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2011-02-18

Depending on the number of input parameters, gp knows whether it is operated in training or in
prediction mode. The highlevel structure of the code is as follows. After some initialisations, we
perform inference and decide whether test set predictions are needed or only the result of the inference
is demanded.

—~

initializations |Sb)= (4a)
(minimalist usage
(process input arguments|5d)

(check byperparameters

W N =

If the number of input arguments is incorrect, we echo a minimalist usage and return.

(minimalist usage[5d)= (Sb)

1 if nargin<7 || nargin>9

2 disp(’Usage: [nlZ dnlZ] = gp(hyp, inf, mean, cov, lik, x, y);’)

3 disp(’ or: [ymu ys2 fmu fs2] = gp(hyp, inf, mean, cov, lik, x, y, xs);’)

4 disp(’ or: [ymu ys2 fmu fs2 1p] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys);’)
S return

6 end

Set some useful default values for empty arguments, and convert inf and 1ik to function handles
and mean and cov to cell arrays if necessary. Initialize variables.

(process input arguments|[5d)= (Sb)

1 if isempty(inf), dinf = @infExact; else % set default inf
2 if iscell(inf), inf = inf{1}; end % cell input is allowed
3 if ischar(inf), inf = str2func(inf); end % convert into function handle
4 end

5 if isempty(mean), mean = {@meanZero}; end % set default mean
6 if ischar(mean) || isa(mean, ’function_handle’), mean = {mean}; end Y% make cell
7 if isempty(cov), error(’Covariance function cannot be empty’); end 7, no default
8 if ischar(cov) || isa(cov, ’function_handle’), cov = {cov}; end 7 make cell
9 covl = cov{1l}; if isa(covl, ’function_handle’), covl = func2str(covl); end
10 if strcmp(covl,’covFITC’); inf = Q@infFITC; end % only one possible inf alg
11 if isempty(lik), 1ik = @likGauss; else % set default lik
12 if iscell(1lik), 1lik = 1ik{1}; end % cell input is allowed
13 if ischar(lik), 1lik = str2func(lik); end % convert into function handle

14 end
15D = size(x,2);

Check that the sizes of the hyperparameters supplied in hyp match the sizes expected. The three parts
hyp.mean, hyp.cov and hyp.1lik are checked separately, and define empty entries if they don’t exist.

(check byperparameters|[se)= (Sb)
1 if “isfield(hyp,’mean’), hyp.mean = []; end % check the hyp specification
2 if eval(feval(mean{:})) ~= numel(hyp.mean)

3 error (’Number of mean function hyperparameters disagree with mean function’)

4 end

5 if ~isfield(hyp,’cov’), hyp.cov = []; end

6 if eval(feval(cov{:})) "= numel(hyp.cov)

7 error (’Number of cov function hyperparameters disagree with cov function’)
8 end

9 if “isfield(hyp,’lik’), hyp.lik = []; end

10 if eval(feval(lik)) ~= numel (hyp.1lik)

11 error (’Number of 1lik function hyperparameters disagree with lik function’)
12 end

Inference is performed by calling the desired inference method inf. In training mode, we accept a
failure of the inference method (and issue a warning), since during hyperparameter learning, hyper-
parameters causing a numerical failure may be attempted, but the minimize function may gracefully
recover from this. During prediction, failure of the inference method is an error.

(inference[6a)= (4a)

1 try % call the inference method

[\

% issue a warning if a classification likelihood is used in conjunction with
% labels different from +1 and -1

4 if strcmp(func2str(lik),’likErf’) || strcmp(func2str(lik),’likLogistic?’)
S uy = unique(y);
6 if any(uy~=+1 & uy~=-1)
7 warning (’You attempt classification using labels different from {+1,-1}\n’)
8 end
9 end
10 if nargin>7 % compute marginal likelihood and its derivatives only if needed
11 post = inf (hyp, mean, cov, lik, x, y);
12 else
13 if nargout==
14 [post nlZ] = inf(hyp, mean, cov, lik, x, y); dnlZ = {};
15 else
16 [post nlZ dnlZ] = inf (hyp, mean, cov, lik, x, y);
17 end
18 end
19 catch
20 msgstr = lasterr;
21 if nargin > 7, error(’Inference method failed [}s]’, msgstr); else
22 warning (’Inference method failed [%s] .. attempting to continue’,msgstr)
23 dnlZ = struct(’cov’,0*hyp.cov, ’mean’,0xhyp.mean, ’1lik’,0*hyp.lik);
24 varargout = {NaN, dnlZ}; return % continue with a warning
25 end
26 end

We copy the already computed negative log marginal likelihood to the first output argument, and if
desired report its partial derivatives w.r.t. the hyperparameters if running in inference mode.

Predictions are computed in a loop over small batches to avoid memory problems for very large test

sets.

(compute test predictions [sb)= (4a)
1 alpha = post.alpha; L = post.L; sW = post.sW;
2 if issparse(alpha) % handle things for sparse representations
3 nz = alpha "= 0; % determine nonzero indices
4 if issparse(L), L = full(L(nz,nz)); end % convert L and sW if necessary
5 if issparse(sW), sW = full(sW(nz)); end
6 else nz = true(size(alpha)); end % non-sparse representation
7 if numel(L)== % in case L is not provided, we compute it
8 K = feval(cov{:}, hyp.cov, x(nz,:));

9 L = chol(eye(sum(nz))+sW*sW’.*K);

10 end

11 Ltril = all(all(tril(L,-1)==0)); % is L an upper triangular matrix?
12 ns = size(xs,1); % number of data points

13 nperbatch = 1000; % number of data points per mini batch

14 nact = 0; % number of already processed test data points
15 ymu = zeros(mns,1); ys2 = ymu; fmu = ymu; fs2 = ymu; lp = ymu; % allocate mem
16 while nact<ns % process minibatches of test cases to save memory
17 id = (nact+1):min(nact+nperbatch,ns); % data points to process
18 (make predictions|7)

19 nact = id(end); % set counter to index of last processed data point
20 end

21 if nargin<9

22 varargout = {ymu, ys2, fmu, fs2, [], post}; % assign output arguments
23 else

24 varargout = {ymu, ys2, fmu, fs2, lp, postl};

25 end

In every iteration of the above loop, we compute the predictions for all test points of the batch.

(make predictions[7)= (6b)

1 kss = feval(cov{:}, hyp.cov, xs(id,:), ’diag’); % self-variance
2 Ks = feval(cov{:}, hyp.cov, x(nz,:), xs(id,:)); % cross-covariances
3 ms = feval(mean{:}, hyp.mean, xs(id,:));

4 fmu(id) = ms + Ks’*full(alpha(nz)); % predictive means
5 if Ltril % L is triangular => use Cholesky parameters (alpha,sW,L)
6 V = L’\(repmat(sW,1,length(id)).*Ks);

7 fs2(id) = kss - sum(V.*V,1)7; % predictive variances
8 else % L is not triangular => use alternative parametrisation
9 £fs2(id) = kss + sum(Ks.*(L*Ks),1)’; % predictive variances
10 end

11 £fs2(id) = max(fs2(id),0); % remove numerical noise i.e. negative variances

12 if nargin<9

13 [1p(id) ymu(id) ys2(id)]
14 else

15 [1p(id) ymu(id) ys2(id)]
16 end

lik(hyp.lik, [], fmu(id), £s2(id));

lik (hyp.lik, ys(id), fmu(id), £s2(id));

3 Inference Methods

Inference methods are responsible for computing the (approximate) posterior post, the (approxi-
mate) negative log marginal likelihood n1Z and its partial derivatives dnlZ w.r.t. the hyperparame-
ters hyp. The arguments to the function are hyperparameters hyp, mean function mean, covariance
function cov, likelihood function 1ik and training data x and y. Several inference methods are
implemented and described this section.

(infMethods.m [8)=

1 % Inference methods: Compute the (approximate) posterior for a Gaussian process.
2 % Methods currently implemented include:

3%

4 % infExact Exact inference (only possible with Gaussian likelihood)

S h infFITC Large scale regression with approximate covariance matrix

6 % inflLaplace Laplace’s Approximation

7 % infEP Expectation Propagation

8 % infVB Variational Bayes

9 %

10 % infL0O Leave-0One-0ut predictive probability and Least-Squares Approxim.
11 %

12 7 The interface to the approximation methods is the following:
13 %
14 7% function [post nlZ dnlZ] = inf..(hyp, cov, lik, x, y)

15 %

16 % where:

17 %

18 % hyp is a struct of hyperparameters

19 % cov is the name of the covariance function (see covFunctions.m)

20 % lik is the name of the likelihood function (see likFunctions.m)

21 % X is a n by D matrix of training inputs

22 % y is a (column) vector (of size n) of targets

23 %

24 % nlZ is the returned value of the negative log marginal likelihood

25 % dnlZ is a (column) vector of partial derivatives of the negative

26 % log marginal likelihood w.r.t. each hyperparameter

27 %h post struct representation of the (approximate) posterior containing
28 % alpha is a (sparse or full column vector) containing inv(K)*m, where K
29 % is the prior covariance matrix and m the approx posterior mean
30 % sW is a (sparse or full column) vector containing diagonal of sqrt (W)
31 % the approximate posterior covariance matrix is inv(inv(K)+W)
32 % L is a (sparse or full) matrix, L = chol(sW*KxsW+eye(n))

33 %

34 % Usually, the approximate posterior to be returned admits the form

35 % N(m=K*alpha, V=inv(inv(K)+W)), where alpha is a vector and W is diagonal;
36 % if not, then L contains instead -inv(K+inv(W)), and sW is unused.

37 %

38 % For more information on the individual approximation methods and their
39 % implementations, see the separate inf??.m files. See also gp.m

40 %

41 (gpml copyright[sa)

9

Not all inference methods are compatible with all likelihood functions, e.g.. exact inference is only
possible with Gaussian likelihood. In order to perform inference, each method needs various prop-
erties of the likelihood functions, section 4

3.1 Exact Inference

For Gaussian likelihoods, GP inference reduces to computing mean and covariance of a multivariate
Gaussian which can be done exactly by simple matrix algebra. The program inf/infExact.m does
exactly this. If it is called with a likelihood function other than the Gaussian, it issues an error. The
Gaussian posterior q(f|D) = N(flu, V) is exact.

{inf/infExact.m)=

function [post nlZ dnlZ] = infExact(hyp, mean, cov, lik, x, y)

1
2
3 % Exact inference for a GP with Gaussian likelihood. Compute a parametrization
4 % of the posterior, the negative log marginal likelihood and its derivatives

5% w.r.t. the hyperparameters. See also "help infMethods".

6 %

7 (gpml copyright|[Sa)

8 %

9 % See also INFMETHODS.M.

10

11 likstr = 1lik; if “ischar(lik), likstr = func2str(lik); end

12 if “strcmp(likstr,’likGauss’) % NOTE: no explicit call to likGauss
13 error (’Exact inference only possible with Gaussian likelihood?’);

14 end

15

16 [n, D] = size(x);

17 K = feval(cov{:}, hyp.cov, x); % evaluate covariance matrix
18 m = feval(mean{:}, hyp.mean, x); % evaluate mean vector
19
20 sn2 = exp(2*xhyp.lik); % noise variance of likGauss
21 L = chol(K/sn2+eye(n)); % Cholesky factor of covariance with noise
22 alpha = solve_chol(L,y-m)/sn2;

23

24 post.alpha = alpha; % return the posterior parameters
25 post.sW = ones(n,1)/sqrt(sn2); % sqrt of noise precision vector
26 post.L = L; % L = chol(eye(n)+sW*sW’.*K)
27

28 if nargout>1 % do we want the marginal likelihood?
29 nlZ = (y-m)’*alpha/2 + sum(log(diag(L))) + n*log(2*pi*sn2)/2; 7 -log marg lik
3 if nargout>2 % do we want derivatives?
3 dnlZ = hyp; % allocate space for derivatives
32 Q = solve_chol(L,eye(n))/sn2 - alpha*alpha’; % precompute for convenience
33 for i = 1:numel(hyp.cov)

34 dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [1, 1)))/2;

35 end

36 dnlZ.1lik = sn2*trace(Q);

37 for i = 1:numel(hyp.mean),

38 dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)’*alpha;

39 end

40 end

41 end

3.2 Laplace’s Approximation

For differentiable likelihoods, Laplace’s approximation, approximates the posterior by a Gaussian
centered at its mode and matching its curvature infLaplace.m.

More concretely, the mean of the posterior q(f{D) = N(flu, V) is given by

n

1 c
i = argmin (), where ¢(f) = > (f —m) "K~!(f Zlnp yilfi) < —Inlp(fpylf)l. (2)

2 .. .
The curvature a - fT = K1 4+ W with W;; = % Inp(yilfi) serves as precision for the Gaussian

posterior approximation V = EK_] + W)~ ! and the marginal likelihood Z = fp p(ylf)df is ap-
proximated by Z ~ Z; o = [¢(f)df where we use the 2nd order Taylor expansion at the mode p

given by ¢(f) = ¢(w) + 3(f — W) TV H(f —) ~ ¢(f).

Laplace’s approximation needs derivatives up to third order for the mode fitting procedure (Newton

method)
k

0
dk — ﬁlogp(l’”f)s k_091:253

and
Kk

dp; ofk

evaluated at the latent location f and observed value y. The likelihood calls (see section

dpe = logp(ylf), k=0,2

e [d0, d1, 42, d3] = 1lik(hyp, y, f, [, ’infLaplace’)
and
e [d0, d2] = 1lik(hyp, y, f, [0, ’infLaplace’, i)

return exactly these values.

3.3 Expectation Propagation

The basic idea of Expectation Propagation (EP) is to replace the non-Gaussian likelihood terms
p(yilfi) by Gaussian functions t(fi;vi, Ti) = exp(vifi — %Tlf) and to adjust the parameters vi, T;
such that the following identity holds:

1

1
Jka—i(f) “t(fisvi, 1)df = Jka—i(f) plyilfy)df, k=1,2
Zt,i Zv,i

with the so-called cavity distributions q—(f) = N(flm, K) [[.; t(fj;vj,T5) oc N(flp, V) /t(fi;vi, i)
equal to the posterior divided by the ith Gaussian approximation function and the two normalisers
Zii = [q_i(f) - t(fizvi,ti)df and Zp 3 = [q_i(f) - p(yilfi)df.

In order to apply the moment matching steps in a numerically safe way, EP requires the expectations

k
& = aklogjp(mfm(ﬂu,cz)df, k=0,1,2
o
and
a- Jp(yfm(fu, o?)df

which can be obtained by the likelihood calls (see section [4)

10

e [d0, d1, d2] = lik(hyp, y, mu, s2, ’infEP?)
and

e d = lik(hyp, y, mu, s2, ’infEP’, i).

3.4 Variational Bayes

Based on individual lower bounds to every likelihood

PlYIf) > tlf;7) = exp (B — 35 — 3h(y)) o N(fIBv,)

of scaled Gaussian form, one can construct a joint lower bound on the marginal likelihood
2= [N(fim, Viplyifidt > Zya = | Nifim, Vit y)df

that can be maximised w.r.t. to the variational parameters y. Whenever, the likelihood is log-concave,
the maximisation problem in <y is concave. Details about h(y) and 3(y) can be found in papers by
Palmer et al. | Variational EM Algorithms for Non-Gaussian Latent Variable Models , NIPS, 2006
and Nickisch & Seeger | Convex Variational Bayesian Inference for Large Scale Generalized Linear
Models , ICML, 2009.

In practice, we use a Newton algorithm requiring

ok ok
- b, = — k=0,1,2
dhk aykh(y)a d k a'}/k B(’Y)a s 1y
and
ad=2ny)
0py

which are delivered by the likelihood calls (see section
e [dhO, dbO, dhil, dbl, dh2, db2] = lik(hyp, y, [1, ga, ’infVB?)
and

e d = lik(hyp, y, [1, ga, ’infVB’, i).

11

http://books.nips.cc/papers/files/nips18/NIPS2005_0803.pdf
http://www.cs.mcgill.ca/~icml2009/papers/296.pdf
http://www.cs.mcgill.ca/~icml2009/papers/296.pdf

4 Likelihood Functions

A likelihood function Py (ylf) (with hyperparameters p) is a conditional density [P, (ylf)dy = 1
defined for scalar latent function values f and outputs y. In the GPML toolbox, we use iid. likelihoods
Py (ylf) = [TiL, Pp(vilfi). The approximate inference engine does not explicitly distinguish between
classification and regression likelihoods: it is fully generic in the likelihood allowing to use a single
code in the inference step.

Likelihood functionality is needed both during inference and while predicting.

4.1 Prediction

A prediction at x, conditioned on the data D = (X,y) (as implemented in gp.m) consists of the pre-
dictive mean , and variance G%J* which are computed from the Gaussian marginal approximation

N(f*|uf*a O—%*) via

p.ID,x) = Jp(y*|f*)p(f*|®,x*)df*. 3)

%

Jp(y*mm(muﬁ,cr%gdf*. (4)

The moments are obtained by py, = [y.p(y.|D,x,)dy, and cr%* = [(ys — iy,)2 (Ul D, x4) dys.
The likelihood call

e [1p,ymu,ys2] = lik(hyp, [I, fmu, fs2)
does exactly this. Evaluation of the log of py, = p(y«|D, x.) for values y. can be done via
e [lp,ymu,ys2] = lik(hyp, y, fmu, £s2)

where 1p contains the number Inp,,,.

The binary case is simple since y, € {—1,+1}and 1 =p,, +p_y,. Using 7, = py, we find

py* - 1_7_[* y*:_l

by, =) upWDx)=2-m —1el-1,1], and
y.==x1

op. = D (Y= 1) pualDyx) =4 (1 —) € 10,10,

The continuous case for likelihoods depending on v, = |f. — y.| only is also simple. By noting that
P(y«lfs) = p(y« + plf« + p), we can swap the order of integration and use the Gaussian marginal
approximation N(f|ps,, cr%*) to find

Hy. = Hf,, and

Ui* of, + inp(y*loldy*.

%

In the following, we will detail how and which likelihood functions are implemented in the GPML
toolbox. Further, we will mention dependencies between likelihoods and inference methods and
provide some analytical expressions in addition to some likelihood implementations.

12

4.2 Interface

The likelihoods are in fact the most challenging object in our implementation. Different inference
algorithms require different aspects of the likelihood to be computed, therefore the interface is rather
involved as detailed below.

(likFunctions.m13)=

1 % likelihood functions are provided to be used by the gp.m function:

2%

3% likErf (Error function, classification, probit regression)

4 % likLogistic (Logistic, classification, logit regression)

5%

6 % likGauss (Gaussian, regression)

7 % likLaplace (Laplacian or double exponential, regression)

8 % likSech? (Sech-square, regression)

9 % 1ikT (Student’s t, regression)

10 %

11 % The likelihood functions have three possible modes, the mode being selected
12 % as follows (where "1lik" stands for any likelihood function in "1lik/lik*.m".):
13 %

14 % 1) With one or no input arguments: [REPORT NUMBER OF HYPERPARAMETERS]
15 %

16 % s = 1lik OR s = 1lik(hyp)

17 %

18 % The likelihood function returns a string telling how many hyperparameters it
19 % expects, using the convention that "D" is the dimension of the input space.
20 % For example, calling "likLogistic" returns the string ’0°.
21 %
22 9
23 % 2) With three or four input arguments: [PREDICTION MODE]
24 %
25 % lp = lik(hyp, y, mu) OR [lp, ymu, ys2] = lik(hyp, y, mu, s2)
26 %
27 % This allows to evaluate the predictive distribution. Let p(y_*|f_*) be the
28 % likelihood of a test point and N(f_*|mu,s2) an approximation to the posterior
29 % marginal p(f_*|x_*,x,y) as returned by an inference method. The predictive
30 % distribution p(y_*|x_*,x,y) is approximated by.

31 % q(y_*) = \int N(f_*|mu,s2) p(y_*|f_*) df_x

32 %

33 % lp = log(q(y)) for a particular value of y, if s2 is [] or 0, this

34 % corresponds to log(p(ylmu))

35 % ymu and ys2 the mean and variance of the predictive marginal q(y)

36 % note that these two numbers do not depend on a particular
37 % value of y

38 % All vectors have the same size.

39 %
40 %
41 % 3) With five or six input arguments, the fifth being a string [INFERENCE MODE]
42 %
43 % [varargout] = lik(hyp, y, mu, s2, inf) OR
44 %, [varargout] = lik(hyp, y, mu, s2, inf, i)
45 7%
46 % There are three cases for inf, namely a) inflLaplace, b) infEP and c) infVB.
47 % The last input i, refers to derivatives w.r.t. the ith hyperparameter.
48 %
49 % al) [sum(lp),dlp,d2lp,d31lp] = lik(hyp, y, £, [], ’infLaplace’)

50 % 1p, dlp, d2lp and d3lp correspond to derivatives of the log likelihood

51 % log(p(ylf)) w.r.t. to the latent location f.

13

52°% 1p = log(p(ylf))

’inflaplace’,

53 % dlp = d log(p(ylf)) / daf

54 % d21p = d~2 log(p(ylf)) / df~2

55 % d3lp = d°3 log(p(ylf)) / df-3

56 %

57 % a2) [1lp_dhyp,d2lp_dhyp]l = lik(hyp, y, £, [1,

58 % returns derivatives w.r.t. to the ith hyperparameter
59 % 1lp_dhyp = d log(p(ylf)) / (df dhyp_i)

60 % d2lp_dhyp = d~3 log(p(ylf)) / (df~2 dhyp_i)

61 7%

62 %

63 % b1l) [1Z,d1Z,d21Z] = lik(hyp, y, mu, s2, ’infEP?’)
64 % let Z = \int p(ylf) N(f|mu,s2) df then

65 % 1z = log(Z)

66 % dlZ = d log(Z) / dmu

67 % d21Z = d~2 log(Z) / dmu-~2

68 %

69 % b2) [dlZhypl = lik(hyp, y, mu, s2, ’infEP’, i)

i)

70 % returns derivatives w.r.t. to the ith hyperparameter

71 % dlZhyp = d log(Z) / dhyp_i

72 %

73 h

74 % c1) [h,b,dh,db,d2h,d2b] = 1lik(hyp, y, [1, ga, ’infVB’)

75 % ga is the variance of a Gaussian lower bound to the likelihood p(ylf).

76 % p(ylf) \ge exp(bxf - f.72/(2xga) - h(ga)/2) \propto N(f|b*ga,ga)

77 % The function returns the linear part b and the "scaling function" h(ga) and
78 % derivatives dh = d h/dga, db = d b/dga, d2h = d°2 h/dga and d2b = d4d°2 b/dga.
79 h

80 % <c2) [dhhypl = lik(hyp, y, [1, ga, 2infVB’, i)

81 % dhhyp = dh / dhyp_i, the derivative w.r.t. the ith hyperparameter

82 %

83 % Cumulative likelihoods are designed for binary classification. Therefore, they
84 7 only look at the sign of the targets y; zero values are treated as +1.

85 %

86 % See the help for the individual likelihood for the computations specific to
87 % each likelihood function.

88 %
89 (gpml copyright|5a)

4.3 Implemented Likelihood Functions

The following table enumerates all (currently) implemented likelihood functions that can be found

at 1ik/1ik<NAME>.m and their respective set of hyperparameters p.

<NAME> regression y; € R Po(yilfi) = p=
Gauss Gaussian N(yilfi, 02) = \/21_710 exp <— (1“2;21)2 {In o}

- T _ 7T
Sech2 Sech-squared Tt e) T = 303 {ln o}
Laplace Laplacian S exp (—lyigm) , b= % {In o}

, regth) g (wi—f2) 7

T Student’s t o (14) {In(v—1),In o}
<NAME> classification y; € {£1} | Pp(yilfi) = p=
Erf Error function flil;l N(t)dt 0
Logistic Logistic function T +exp(l_yi 3 0

4.4 Compatibility Between Likelihoods and Inference Methods

The following table lists all possible combinations of likelihood function and inference methods.

’ Likelihood \ Inference ‘ Exact ‘ EP ‘ Laplace ‘ Variational Bayes ‘ regression ‘

Gaussian v v v v regression
Sech-squared v v v regression
Laplacian v v regression
Student’s t v v regression

Error function v v v probit regression
Logistic function v v v logit regression

Exact inference is only tractable for Gaussian likelihoods. Expectation propagation together with
Student’s t likelihood is inherently unstable due to non-log-concavity. Laplace’s approximation for
Laplace likelihoods is not sensible because at the mode the curvature and the gradient can be un-
defined due to the non-differentiable peak of the Laplace distribution. Special care has been taken
for the non-convex optimisation problem imposed by the combination Student’s t likelihood and
Laplace’s approximation.

4.5 Gaussian Likelihood

The Gaussian likelihood is the simplest likelihood because the posterior distribution is not only
Gaussian but can be computed analytically. In principle, the Gaussian likelihood would only be
operated in conjunction with the exact inference method but we chose to provide compatibility with
all other inference algorithms as well because it enables code testing and allows to switch between
different regression likelihoods very easily.

(lik/lik Gauss.m[15)=

1 function [varargout] = likGauss(hyp, y, mu, s2, inf, i)

2

3 % likGauss - Gaussian likelihood function for regression. The expression for the
4 % likelihood is

S h likGauss (t) = exp(-(t-y)~2/2*sn~2) / sqrt(2*pi*sn~2),

6 % where y is the mean and sn is the standard deviation.

7 h

8 % The hyperparameters are:

9 h

10 % hyp = [log(sn) 1]

11 7%

12 J, Several modes are provided, for computing likelihoods, derivatives and moments

13 J, respectively, see likelihoods.m for the details. In general, care is taken
14 % to avoid numerical issues when the arguments are extreme.

15 %

16 % See also likFunctions.m.

L7 %

18 (gpml copyright|5a)

19

20 if nargin<2, varargout = {’1’}; return; end % report number of hyperparameters
21

22 sn2 = exp(2*hyp);

23

24 if nargin<b % prediction mode if inf is not present
25 (Prediction with Gaussian likelibood |16a)

26 else

27 switch inf

15

[\
o/e]

case ’inflaplace’

29 (Laplace’s method with Gaussian likelibood [16b)

30 case ’infEP’
31 (EP inference with Gaussian likelibood[17a)

case ’infVB’

(Variational Bayes inference with Gaussian likelibood

W W W W
(2 N IS S}

end
end
(Prediction with Gaussian likelihood [16a)= (13}
1 if numel(y)==0, y = zeros(size(mu)); end
2 s2zero = 1; if nargin>3, if norm(s2)>0, s2zero = 0; end, end % s2==0 7
3 if s2zero % log probability
4 lp = -(y-mu)."2./sn2/2-log(2*pi*sn2)/2; s2 = 0;
5 else
6 1p = likGauss(hyp, y, mu, s2, ’infEP’); % prediction
7 end
8 ymu = {}; ys2 = {};
9 if nargout>1
10 ymu = mu; % first y moment
11 if nargout>2
12 ys2 = s2 + sn2; % second y moment
13 end
14 end

15 varargout = {lp,ymu,ys2};

The Gaussian likelihood function has a single hyperparameter p, the log of the noise standard devia-
tion Op.

4.5.1 Exact Inference

Exact inference doesn’t require any specific likelihood related code; all computations are done directly

by the inference method, section 3.1}

4.5.2 Laplace’s Approximation

(Laplace’s method with Gaussian likelibood [16b)= (15)
| if nargin<6 % no derivative mode
2 if numel(y)==0, y=0; end

3 ymmu = y-mu; dlp = {}; d21p = {}; d31lp = {};

4 1p = -ymmu."2/(2*sn2) - log(2*pi*sn2)/2;

S if nargout>1

6 dlp = ymmu/sn2; % dlp, derivative of log likelihood
7 if nargout>2 % d2lp, 2nd derivative of log likelihood
8 d21lp = -ones(size(ymmu))/sn2;

9 if nargout>3 % d3lp, 3rd derivative of log likelihood
10 d31lp = zeros(size(ymmu));

11 end

12 end

13 end

14 varargout = {sum(lp),dlp,d21p,d31lp};

15 else % derivative mode
16 1lp_dhyp = (y-mu).~2/sn2 - 1; Y% derivative of log likelihood w.r.t. hypers
17 d21p_dhyp = 2%ones(size(mu))/sn2; % and also of the second mu derivative
18 varargout = {lp_dhyp,d21lp_dhyp};

19 end

16

4.5.3 Expectation Propagation

(EP inference with Gaussian likelibood[17a)= (13)

1 if nargin<é % no derivative mode
2 1Z = -(y-mu)."2./(sn2+s2)/2 - log(2*pix(sn2+s2))/2; % log part function
3 dlz = {}; d21Z = {};

4 if nargout>1

S dlZ = (y-mu)./(sn2+s2); % 1lst derivative w.r.t. mean
6 if nargout>2

7 d21Z = -1./(sn2+s2); % 2nd derivative w.r.t. mean
8 end

9 end

10 varargout = {1Z,d1Z,d21Z};

11 else % derivative mode
12 dlZhyp = ((y-mu)."2./(sn2+s2)-1) ./ (1+s2./sn2); % deriv. w.r.t. hyp.lik
13 varargout = {dlZhyp};

14 end

4.5.4 Variational Bayes
(Variational Bayes inference with Gaussian likelibood [17b)= (15)

1 if nargin<6

2 % variational lower site bound

3 % t(s) = exp(-(y-s)~2/2sn2)/sqrt (2*pi*sn2)

4 % the bound has the form: b*s - s.72/(2*ga) - h(ga)/2 with b=y/ga

5 ga = s2; n = numel(ga); b = y./ga; y = y.*ones(n,1);

6 db = -y./ga."2; d2b = 2xy./ga."3;

7 h = zeros(n,1); dh = h; d2h = h; % allocate memory for return args
§ id = ga(:)<=sn2+le-8; % 0K below noise variance
9 h(id) = y(id)."2./ga(id) + log(2*pi*sn2); h(~id) = Inf;

10 dh(id) = -y(id).~2./ga(id)."2;

11 d2h(id) = 2xy(id)."2./ga(id)."3;

12 id = ga<0; h(id) = Inf; dh(id) = 0; d2h(id) = 0; % neg. var. treatment
13 varargout = {h,b,dh,db,d2h,d2b};

14 else

15 ga = s2; n = numel(ga);

16 dhhyp = zeros(n,1); dhhyp(ga(:)<=sn2) = 2;

17 dhhyp(ga<0) = 0; % negative variances get a special treatment
18 varargout = {dhhyp}; % deriv. w.r.t. hyp.lik
19 end

17

4.6 Laplace Likelihood
4.6.1 Laplace’s Approximation

The following derivatives are needed:

Inplylf) = —In(2p) — =Y
dolnp sign(f—y)
of b
9%Inp B 3 Inp B 3 Inp _0
(0f)2 (of)3 (dlnon)(0f)2
Olnp _ [f—yl 1
dlnon b

4.6.2 Expectation Propagation

Expectation propagation requires integration against a Gaussian measure for moment matching.

We need to evaluate InZ = In [L(ylf, G%L)N(ﬂu, 02)df as well as the derivatives aénuz and a;ﬁzz
where N(f|w, 02)

—(fﬂl)z), L(ylf,02) = %exp (—ly;ﬂ), and b = %2, As a first
step, we reduce the number of parameters by means of the substitution f = =Y yielding

1
= ——ex
\/27r0'Ze p(202 V2
On

z = Jz(mf,oﬁmm,oz)df
1 V2 f—p)? f—
- maz\gijexp (—(ZGZL) >exp <—\6| crny>df
T N
= Za\fﬂ Jexp (—W) exp (—\ﬁ\fl) df

o2 (f— B=u
_ O-nJeXp - “< ““> £ (flo, 1)df

00 V2T 202
1)

= — | L(f]0, 1)N(f]fr, 67)df
On

lnz = an—ann:anL(ﬂO,1)N(f|ﬁ,€rz)df—ln6n

18

with fi = ¥ and & = Z-. Thus, we concentrate on the simpler quantity In Z.

C

InZ = In|exp (—(f ff) df —In&6v2m—In V20,

r0 ~ 0 ~\2
= In exp<—(fziL —l—ff)df%—J exp(—(f_(;) —\f2f>df

= In

roexp (—(f_;n”Z)df _E

m2\ (° (f —m_)? mi
= In |exp <2 5 J_OO exp (—2&2> df 4 exp <262>

2 0 2
= In |exp <];6_2) N(fjm_, &)df+exp (212> (1 _
0

[m2 m_ m2 my m2 fi?
= In exp(2 2 (D(5)—exp<262)d)(5)+exp<262>}—262—1n\f20n

0z = o fexp (v28) @ () b exp (v2R) @ (-] 4 62 - n Vo

= In |exp In®(—z,) +V2j + exp In®(z_)—V2i || +6 —Inv20n

= In(e* +e%) +&>—Inv20n

wherez+:%+6\/§—”y+ V2,2 = _aﬁ:%_%ﬂandg:ﬁ;ﬁ,azi_

Now, using % ln®(z) = @1) %@(z) = gg% 9% we tackle first derivative

(z

o Q*h:'

dlnz e G tet G-
o ed+ +ed-
da 9 V2
A Y ho— v
m aufl (Z+)+Gn
N(=z4) | V2 q: V2
o®d(—z,) on o On
da_ 0 2
da- _ 0 a) V2
op op On
_ N) V2 _a- V2
~ o0®(z.) oOn O On
day _ _qx V2
on %) On

19

as well as the second derivative

d d d _da_
2z 2 (oo %) + 2 (e 5) YA
ouz ed+ + ed- ou
2 2
i eai% — el da+ n 0“at
ou ou oun op?
0%a, _ _1 %N(—ZH@(—ZH - %‘I’(—ZHN(—ZH
ou? o D2(—z)
2 _
ANz @(2) T - N () O
o D2 (—z4)
_ N(—z4)) O(—z4)z4 —N(—2z4) _ _q2+ —q4+Z+
o2 D2 (—z,) o2
0% 19Nz)0(z-) — 5 @z)N(z-)
o2 o D2(z)
—z2 /2 z_
AN 5 Nz) B
o ®2(z_)
_ Nz.) =@z)z —Nz) q+qz
- o2 D2(z_) N o2
?ar qi Fq+zs
oz 0?2

which can be simplified to

?Inz e“by +etb_ (3InZ)\?
ouz ed+ 4 ed- ou

using

ou op

2
dar\® 9 2 E
b:l::(aﬂ:) N azi _ (chii\f) 91 Fqizs

We also need

a a(1+ a_ da_ 2
0lnz - € +alncrn—i_e alncn_ZU]
0lnon e+ 4 ea- 02

4.6.3 Variational Bayes

We need h(y) and its derivatives as well as (y):

20

2
hy) = Sv+hnoy) +viy !
n

2 ~
hWiy) = 5 —viy?
Gn
h'(y) = 2y*y3
Bly) = yy !

4.7 Student’s t Likelihood

The likelihood has two hyperparameters (both represented in the log domain to ensure positivity):
the degrees of freedom v and the scale 0, with mean y (for v > 1) and variance *5 02 (for v > 2).

v v+1

(f—y)?

)2 7 r4)
VoL ’ T (Y) Vvl

pluin) =2 (1+

4.7.1 Laplace’s Approximation

For the mode fitting procedure, we need derivatives up to third order; the hyperparameter derivatives

at the mode require some mixed derivatives. All in all, using r =y — f, we have

Inp(ylf)

Olnp
of
9%Inp
(9f)?
3 Inp

(0f)3
Olnp

v+1 v 1 , v+1 12
T

v+1)——
v)T2+’\/0'121
% —vo}
(12 +vo2)?
3 —3rvol

(r2+vo2)3

(v+1)

2(v+1)

o0lnv

0z
Olnv

3 Inp
(01ln~v)(0f)2
Olnp
0lnon

93 Inp
(0ln oy)(0f)2

0z —Vln(l—I— r2 >~I—V+1' r2
dlnv 2 Vo 2 r24vo
vdlnF(VTH) vdInT (3) 1

2 dlnv 2 dlnv 2

2 (r? = 3(v+ 1)on2) +voi

(r2+vo2)3

2

2 2
T4+ voy

(v+1)

voZ — 312

2
2vor (v + 1)m

4.8 Cumulative Logistic Likelihood

The likelihood has one hyperparameter (represented in the log domain), namely the standard devia-

tion on,

p(ylf) = Z-cosh 2 (t(f —y)), T

B 7T 7 — s
B ZGn\/g’ B 4(7n\/§

21

4.8.1 Laplace’s Approximation

The following derivatives are needed where ¢(x) = In(cosh(x))

Inp(ylf)
Olnp

of
9%Inp
(0f)?
3 Inp
(2f)3
93 Inp
(0ln oy)(0f)?
Olnp

Olnon

In(7t) — In(40,V3) — 2¢ (t(f —y))

21¢" (t(f —y))

—27¢" (t(f —y))

20¢" (t(f—y))

27 (29" (t(f —y)) +T(f —y) " (t(f —y)))

2t(f—y)o' (t(f—y)) — 1

22

5 Mean Functions

A mean function mg : X — R (with hyperparameters ¢) of a GP f is a scalar function defined over
the whole domain X that computes the expected value m(x) = E[f(x)] of f for the input x.

5.1 Interface

In the GPML toolbox, a mean function m : X — R needs to implement evaluation m = mg, (X) and
first derivatives m; = a%}m with respect to the components i of the parameter ¢ € @ as detailed
below.

(meanFunctions.m3)=

1
2
3
4
S

b
h

mean functions to be use by Gaussian process functions. There are two
different kinds of mean functions: simple and composite:

simple mean functions:

meanZero - zero mean function
mean(ne - one mean function
meanConst - constant mean function
meanLinear - linear mean function

composite covariance functions (see explanation at the bottom):

meanScale - scaled version of a mean function
meanPow - power of a mean function

meanProd - products of mean functions
meanSum - sums of mean functions

meanMask - mask some dimensions of the data

Naming convention: all mean functions are named "mean/mean*.m".

1) With no or only a single input argument:

s = meanNAME or s = meanNAME (hyp)
The mean function returns a string s telling how many hyperparameters hyp it
expects, using the convention that "D" is the dimension of the input space.
For example, calling "meanLinear" returns the string °’D’.
2) With two input arguments:

m = meanNAME (hyp, x)
The function computes and returns the mean vector where hyp are the
hyperparameters and x is an n by D matrix of cases, where D is the dimension
of the input space. The returned mean vector is of size n by 1.
3) With three input arguments:

dm = meanNAME (hyp, x, i)

The function computes and returns the n by 1 vector of partial derivatives
of the mean vector w.r.t. hyp(i) i.e. hyperparameter number 1i.

23

45 7% See also doc/usageMean.m.

46 7

47 (gpml copyright[sa)

5.2 Implemented Mean Functions

We offer simple and composite mean functions producing new mean functions m(x) from existing
All code files are named according to the pattern mean/mean<NAME>.m for
simple identification. This modular specification allows to define affine mean functions m(x)
(c + a"x)?. All currently available mean functions

mean functions i (x).

¢ + a'x or polynomial mean functions m(x)

are summarised in the following table.

Simple mean functions m(x)

<NAME> | Meaning m(x)= | ®
Zero mean vanishes always 0 0

One mean equals 1 1 0
Const | mean equals a constant c ceR
Linear | mean linearly depends on x € X C RP a'x acRP
Composite mean functions [pq (x), 1y (x),..] — m(x)

<NAME> | Meaning mx)= | ®
Scale | scale a mean ap(x) xeR
Sum add up mean functions 2 iH(x) | 0
Prod multiply mean functions [[m(x) |0

Pow raise a mean to a power n(x)d 0
Mask act on components I C [1,2,..,D] of x € X C RP only | p(x) 0

5.3 Usage of Implemented Mean Functions

Some code examples taken from doc/usageMean.m illustrate how to use simple and composite mean

functions to specify a GP model.

Syntactically, a mean function nf is defined by

mn

mf

:= {mn} | {mn, {param, mf}} | {mn, {mf,
i.e., it is either a string containing the name of a mean function, a pointer to a mean function or one
of the former in combination with a cell array of mean functions and an additional list of parameters.

:= func’ | @func // simple

., mf}} // composite

(doc/usageMean.m4)=

h
h
h
h

1
2
3

n

mO
ml
mc
ml

5; D =

demonstrate usage of mean functions

See also meanFunctions.m.

(gpml copyright|[5a)

clear all,

close all

2; x = randn(n,D); % create a random data set

% set up simple mean functions

= {’meanZero’}; hypO = []; % no hyperparameters are needed
= {’meanQne’}; hypl = []; % no hyperparameters are needed
= {@meanConst}; hypc = 2; J also function handles are possible
= {@meanLinear}; hypl = [2;3]; % m(x) = 2*%x1 + 3%x2

24

15 % set up composite mean functions

16 msc = {’meanScale’,{m1}}; hypsc = [3; hypll; % scale by 3
17 msu = {’meanSum’,{m0,mc,ml}}; hypsu = [hypO; hypc; hypll; % sum
18 mpr = {@meanProd,{mc,ml}}; hyppr = [hypc; hypll; % product
19 mpo = {’meanPow’,{3,msul}l}; hyppo = hypsu; % third power

20 mask = [0,1,0]; % binary mask excluding all but the 2nd component
21 mma = {’meanMask’,{mask,mpo{:}}}; hypma = hyppo;
22

23 % 0) specify mean function

24 % mean = mO; hyp = hypO;

25 % mean = msu; hyp = hypsu;

26 % mean = mpr; hyp = hyppr;

27 mean = mpo; hyp = hyppo;

28

29 % 1) query the number of parameters

30 feval(meanq{:})

o
J

32 % 2) evaluate the function on x

33 feval(mean{:},hyp,x)

34

35 % 3) compute the derivatives w.r.t. to hyperparameter i
36 i = 2; feval(mean{:},hyp,x,1i)

25

26)

6 Covariance Functions

A covariance function ky, : X x X — R (with hyperparameters) of a GP f is a scalar function
defined over the whole domain X? that computes the covariance k(x,x’) = V[f(x), f(x’)] = E[(f(x) —
m(x))(f(x’) — m(x’))] of f between the inputs x and x’.

6.1 Interface

Again, the interface is simple since only evaluation of the full covariance matrix K = ky,(X) and its
derivatives K; = ameiK as well as cross terms k., = ky, (X, x,) and K.« = ky, (X4, X,) for prediction
are required.

(covFunctions.m 26)=

1
2
3
4
S
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

o
J

32
33
34
35
36
37
38
39
40
41
42
43

% covariance functions to be use by Gaussian process functions. There are two
% different kinds of covariance functions: simple and composite:

% simple covariance functions:

yA covConst - covariance for constant functions

yA covLIN - linear covariance function

yA covLINard - linear covariance function with ARD

yA covLINone - linear covariance function with bias

% covMaterniso - Matern covariance function with nu=1/2, 3/2 or 5/2

yA covNNone - neural network covariance function

yA covNoise - independent covariance function (i.e. white noise)

yA covPeriodic - smooth periodic covariance function (1d) with unit period
yA covPoly - polynomial covariance function

yA covPPiso - piecewise polynomial covariance function (compact support)
yA covRQard - rational quadratic covariance function with ARD

yA covRQiso - isotropic rational quadratic covariance function

yA covSEard - squared exponential covariance function with ARD

yA covSEiso - isotropic squared exponential covariance function

yA covSEisoU - as above but without latent scale

h

% composite (meta) covariance functions (see explanation at the bottom):

yA covScale - scaled version of a covariance function

yA covProd - products of covariance functions

yA covSum - sums of covariance functions

yA covADD - additive covariance function

yA covMask - mask some dimensions of the data

h

% special purpose (wrapper) covariance functions

% covFITC - to be used in conjunction with infFITC for large scale

yA regression problems; any covariance can be wrapped by

yA covFITC such that the FITC approximation is applicable

h

% Naming convention: all covariance functions are named "cov/cov*.m". A trailing
% "iso" means isotropic, "ard" means Automatic Relevance Determination, and

% "one" means that the distance measure is parameterized by a single parameter.

% The covariance functions are written according to a special convention where
% the exact behaviour depends on the number of input and output arguments

% passed to the function. If you want to add new covariance functions, you

% should follow this convention if you want them to work with the function gp.
% There are four different ways of calling the covariance functions:

% 1) With no (or one) input argument(s):

26

44 7,

45 % s = covNAME

46 %

47 % The covariance function returns a string s telling how many hyperparameters it
48 ' expects, using the convention that "D" is the dimension of the input space.
49 % For example, calling "covRQard" returns the string ’(D+2)’.

50 %

51 % 2) With two input arguments:

52 %

53 % K = covNAME (hyp, x) equivalent to K = covNAME(hyp, x, [1)

54 %

55 % The function computes and returns the covariance matrix where hyp are

56 7, the hyperparameters and x is an n by D matrix of cases, where

57 % D is the dimension of the input space. The returned covariance matrix is of
58 % size n by n.

59 %

60 % 3) With three input arguments:

61 %

62 % Ks = covNAME (hyp, x, xs)

63 % kss = covNAME (hyp, xs, ’diag’)
64 7%

65 % The function computes test set covariances; kss is a vector of self covariances
66 % for the test cases in xs (of length ns) and Ks is an (n by ns) matrix of cross
67 % covariances between training cases x and test cases xs.

68 %

69 % 4) With four input arguments:

70 %

71 % dKi = covNAME (hyp, x, [1, i)

72 % dKsi = covNAME(hyp, x, xs, 1)

73 % dkssi = covNAME (hyp, xs, ’diag’, 1)
74

75 % The function computes and returns the partial derivatives of the

76 % covariance matrices with respect to hyp(i), i.e. with

77 % respect to the hyperparameter number i.

78 h

79 % Covariance functions can be specified in two ways: either as a string

80 % containing the name of the covariance function or using a cell array. For
81 % example:

82 %

83 % cov = ’covRQard’;
84 % cov = {’covRQard’};
85 % cov = {@covRQard};
86 %

87 % are supported. Only the second and third form using the cell array can be used
88 % for specifying composite covariance functions, made up of several
89 % contributions. For example:

90 %

91 % cov = {’covScale’, {’covRQiso’}};

92 % cov = {’covSum’, {’covRQiso’,’covSEard’,’covNoise’}};

93 % cov = {’covProd’,{’covRQiso’,’covSEard’,’covNoise’}};

94 % cov = {’covMask’,{mask,’covSEiso’}}

95 % q=1; cov = {’covPPiso’,q};

96 % d=3; cov = {’covPoly’,d};

97 % cov = {’covADD’,{[1,2],’covSEiso’}};

98 % cov = {@covFITC, {@covSEisol}, u}; where u are the inducing inputs
99 %

100 % specifies a covariance function which is the sum of three contributions. To
101 % find out how many hyperparameters this covariance function requires, we do:

27

102 %

103 % feval (cov{:})

104 7%

105 % which returns the string ’3+(D+1)+1’ (i.e. the ’covRQiso’ contribution uses
106 % 3 parameters, the ’covSEard’ uses D+1 and ’covNoise’ a single parameter).
107 %

108 % See also doc/usageCov.m.

109 %

110 (gpml copyright[5a)

6.2 Implemented Covariance Functions
Similarly to the mean functions, we provide a whole algebra of covariance functions k: X x X — R
with the same generic name pattern cov/cov<NAME>.m as before.

Besides a long list of simple covariance functions, we also offer a variety of composite covariance
functions as shown in the following table.

Simple covariance functions k(x,x’)

<NAME> Meaning k(x,x") = ¥

Zero mean vanishes always 0 0

Noise additive measurement noise 0¢28(x — x') Inoy

Const covariance equals a constant o2 Ino¢

LIN linear, X C RP x ' x 0

LINard linear with diagonal weighting, X C RP xTA2x/ {InAq,..,InAp}
LINone linear with bias, X C RP (xTx'+1)/2 Int

Poly polynomial covariance, X C RP o‘zr(xTx’ +c)d {lnc,In oy}

SEard full squared exponential, X C RP O'f exp (——(x —x)TA 2(x— x’)) {InAy,..,InAp,Inoyg}
SEiso diagonal squared exponential, X C RP (Tf exp (1 S(x—x) T (x— x/]) {In¢,Ino¢}

SEisoU squared exponential, X C RP exp(—ﬁx—rx) In¢

RQard rational quadratic, X C RP (7% (1 + i(x —X)T/\’Z[)) « {InA1,..,InAp,Inoy, In o}
RQiso rational quadratic, X C RP 6]% (1 + ﬁ(x —x)T(x— ’)) {In¢,In o¢,In o}
Materniso | Matérn, X C RP, f{(t) =1, f3(t) = 1 +t, f5(t) = f3(t) +%Z O‘Zfd(rd)exp(d)s Ta = %[x—x)T (x —x’) {In¢,Ino¢}

NNone neural net, X C RP, f(x) =1+x" A 2x o? sin™! (%) {InAq,..,InAp,Ino¢}
Periodic | periodic, X C R 0‘2r exp (z sml[zﬂ (x —x’ {In¢,In w,In o}
PPiso compact support, piecewise polynomial f, (1), X C R, 6% max(0,1 —7) - fy(r), r Hx I ,j= L%J +v+1|{lngInos}
Composite covariance functions [k (x,x’), k2 (x,x"), ..] — k(x,x")

<NAME> Meaning k(x,x") = [0)

Scale scale a covariance ak(x,x") xeR

Sum add up covariance functions RIS 0

Prod multiply covariance functions I 5 (x,x") 0

Mask act on components I C [1,2,..,D] of x € X C RP only K(x1,x]) 0

ADD additive, X C RP, index degree set D = {1,.., D} Y acp cr%d 3 i1—a I lier k(e x5 04) {b1,., 0o, Ino¢,..,Ino¢, }

The additive covariance function k(x, x”) starts from a one-dimensional covariance function k(xi, x{, ;)
acting on a single component i € [1,.., D] of x. From that, we define covariance functions k1(xp, x1) =

[[ict x(xi,x{, i) acting on vector-valued inputs x;. The sums of exponential size can efficiently be
computed using the Newton-Girard formulae. Samples functions drawn from a GP with additive co-
variance are additive functions. The number of interacting variables |I| is a measure of how complex
the additive functions are.

6.3 Usage of Implemented Covariance Functions

Some code examples taken from doc/usageCov.m illustrate how to use simple and composite covari-
ance functions to specify a GP model.

Syntactically, a covariance function cf is defined by

cv := >func’ | @func // simple

28

cf := {cv} | {cv, {param, cf}} | {cv, {cf, .., cf}} // composite
i.e., it is either a string containing the name of a covariance function, a pointer to a covariance func-
tion or one of the former in combination with a cell array of covariance functions and an additional
list of parameters.

(doclusageCov.m 29)=

1 % demonstrate usage of covariance functions
2 %

3 % See also covFunctions.m.
4 %

5 (gpml copyright[sa)
6 clear all, close all

7n =5; D=3; x = randn(n,D); xs = randn(3,D); ¥ create a data set
8
9

% set up simple covariance functions
10 cn = {’covNoise’}; sn = .1; hypn = log(sn); 7 one hyperparameter
11T cc = {@covConst}; sf = 2; hypc = log(sf); % function handles 0K

12 ¢1 = {@covLIN}; hypl = [1; % linear is parameter-free
13 cla = {’covLINard’}; L = rand(D,1); hypla = log(L); % linear (ARD)
14 clo = {@covLINonel}; ell = .9; hyplo = log(ell); ¥ linear with bias
15 cp = {@covPoly,3}; c = 2; hypp = log(lc;sfl); % third order poly
16 cga = {@covSEard}; hypga = log([L;sf]l); % Gaussian with ARD
17 cgi = {’covSEiso’}; hypgi = log([ell;sf]); % isotropic Gaussian
18 cgu = {’covSEisoU’}; hypgu = log(ell); % isotropic Gauss no scale
19 cra = {’covRQard’}; al = 2; hypra = log([L;sf;all]); % ration. quad.
20 cri = {@covRQiso}; hypri = log(lell;sf;all); % isotropic
21 em = {’covMaterniso’,3}; hypm = log([ell;sf]); 7% Matern class q=3
22 cnn = {’covNNone’}; hypnn = log([L;sfl); % neural network

23 cpe = {’covPeriodic’}; om = 2; hyppe = log([ell;om;sf]); % periodic
24 ccc = {’covPPiso’,2}; hypcc = hypm; 7 compact support poly degree 2

26 % set up composite covariance functions

27 csc = {’covScale’,{cgul}; hypsc = [log(3); hypgul; % scale by 9
28 csu = {’covSum’,{cn,cc,cl}}; hypsu = [hypn; hypc; hypl]; % sum
29 cpr = {@covProd,{cc,ccc}}; hyppr = [hypc; hypccl; % product

30 mask = [0,1,0]; % binary mask excluding all but the 2nd component
31 cma = {’covMask’,{mask,cgi{:}}}; hypma = hypgi;

% additive based on SEiso using unary and pairwise interactions

cad = {’covADD’,{[1,2],’covSEiso’}};

\S]

G G W

% 0) specify covariance function
cov = cma; hyp = hypma;

% 1) query the number of parameters
feval(cov{:})

O 0 N O\ L»Li W

BB W W W W W
—_ o

% 2) evaluate the function on x
feval(cov{:},hyp,x)

e
Y I)

% 3) evaluate the function on x and xs to get cross-terms
kss feval (cov{:},hyp,xs,’diag’)

=
I

46 Ks = feval(cov{:},hyp,x,xs)
47
48 % 4) compute the derivatives w.r.t. to hyperparameter i

N
O

i = 1; feval(cov{:},hyp,x,[],1)

29

	Gaussian Process Training and Prediction
	The gp Function
	Inference Methods
	Exact Inference
	Laplace's Approximation
	Expectation Propagation
	Variational Bayes

	Likelihood Functions
	Prediction
	Interface
	Implemented Likelihood Functions
	Compatibility Between Likelihoods and Inference Methods
	Gaussian Likelihood
	Exact Inference
	Laplace's Approximation
	Expectation Propagation
	Variational Bayes

	Laplace Likelihood
	Laplace's Approximation
	Expectation Propagation
	Variational Bayes

	Student's t Likelihood
	Laplace's Approximation

	Cumulative Logistic Likelihood
	Laplace's Approximation

	Mean Functions
	Interface
	Implemented Mean Functions
	Usage of Implemented Mean Functions

	Covariance Functions
	Interface
	Implemented Covariance Functions
	Usage of Implemented Covariance Functions

